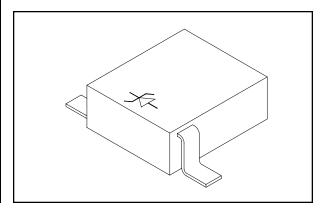


SOLID STATE DEVICES, INC.

14830 Valley View Blvd * La Mirada, Ca 90638 Phone: (562) 404-7855 * Fax: (562) 404-1773 ssdi@ssdi-power.com * www.ssdi-power.com

Designer's Data Sheet

FEATURES:


- Available Voltages from 96V to 1600V. Consult Factory.
- Meets all Environmental Requirements of Mil-PRF-19500
- Custom Configurations Available
- Reverse Polarity Available (Add Suffix "R")
- 150°C Maximum Operating and Storage Temperature
- TX and TXV Level Screening Available

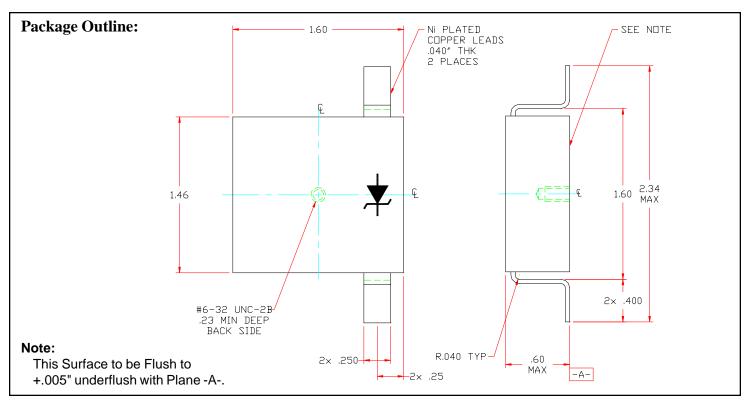
APPLICATIONS:

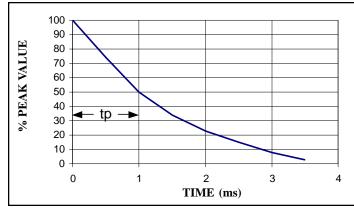
- Voltage Sensitive Components Protection
- Protection Against High Power Surges
- Lightning Protection

STM8057

120 kWATTS 840 VOLTS UNIDIRECTIONAL TRANSIENT VOLTAGE SUPPRESSOR

Maximum Ratings	SYMBOL	VALUE	UNITS
Peak Pulse Power Dissipation 2/	P _D	120	kW
Stand off Voltage	$ m V_{RWM}$	800	V
Breakdown Voltage (Minimum)	V_{BR}	840	W
Clamping Voltage at I _{PP} ^{2/}	V _{CC}	1,000	V
Peak Current	Ірр	120	A
Operating and Storage Temperature	Top, Tstg	-65 to +150	°C


STM8057



SOLID STATE DEVICES, INC

14830 Valley View Blvd * La Mirada, Ca 90638 Phone: (562) 404-7855 * Fax: (562) 404-1773 ssdi@ssdi-power.com * www.ssdi-power.com

Electrical Characteristics	SYMBOL	MIN	MAX	UNITS
Reverse Leakage Current ($V_{WM} = 800V$, $T_A = 25$ °C, 300 µsec pulse minimum)	I_{R1}	-	100	μА
Reverse Leakage Current ($V_{WM} = 800V$, $T_A = 0$ °C, 300 µsec pulse minimum)	I_{R2}	-	200	μА
Breakdown Voltage ($I_{BR} = 15 \text{mA}$, $T_A = 25^{\circ}\text{C}$, 300 µsec pulse minimum)	$V_{ m BR1}$	840	-	V _{DC}
Breakdown Voltage ($I_{BR} = 15 \text{mA}$, $T_A = 0$ °C, 300 µsec pulse minimum)	$ m V_{BR2}$	810	-	V _{DC}
Clamping Voltage $(I_{PP} = 120A_{(pk)}, t_R = 10\mu sec, t_P = 1000\mu sec)$	V _C	-	1000	$\mathbf{V}_{(\mathrm{pk})}$

Notes:

- All voltages are measured with automated test set using 35 msec test time. Longer or shorter test times will have a corresponding effect on the measured value due to the heating effects.
- 2. Current Pulse rises to peak value of I_{PP} in 10 μ sec and decay to half value, $I_{PP}/2$, in 1msec.
- 3. Pulse width (t_P) is defined as the time from peak pulse current I_{PP} to the point where peak pulse current decayed to 50% of rated I_{PP}. (10µsec x 100µsec wave form as defined by R.E.A.)